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Bounds on the presence of quantum chaos in nuclear masses?
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Abstract. Differences between measured nuclear masses and those calculated using the Finite-Range
Droplet Model are analyzed. It is shown that they have a well defined, clearly correlated oscillatory com-
ponent as a function of the proton and neutron numbers. At the same time, they exhibit in their power
spectrum the presence of chaos. Comparison with other mass calculations strongly suggest that this chaotic
component arises from many body effects not included in the mass formula, and that they do not impose
limits in the precision of mass calculations.

PACS. 21.10.Dr Binding energies and masses – 05.40.-a Fluctuation phenomena, random processes, noise,
and Brownian motion – 24.60.Lz Chaos in nuclear systems – 05.45.Tp Time series analysis

1 Introduction

It has been recently proposed that there might be an in-
herent limit to the accuracy with which nuclear masses can
be calculated [1], due to the presence of chaotic motion in-
side the atomic nucleus [2]. This suggestion could have im-
portant consequences in the fields of nuclear physics and
astrophysics, because the knowledge of nuclear masses is
of fundamental importance for a complete understanding
of the nuclear processes that power the Sun and for the
synthesis and relative abundances of the elements [3].

Though great progress has been made in the challeng-
ing task of measuring the mass of exotic nuclei, theoretical
models are necessary to predict their mass in regions far
from stability [4]. The simplest one is that of the Liquid-
Drop Model (LDM). It incorporates the essential macro-
scopic terms, which means that the nucleus is pictured as a
very dense, charged liquid drop. The Finite-Range Droplet
Model (FRDM) [5], which combines the macroscopic ef-
fects with microscopic shell and pairing corrections, has
become the de facto standard for mass formulas. A mi-
croscopically inspired model has been introduced by Du-
flo and Zuker (DZ) [6] with good results. Finally, among
the mean-field methods it is also worth mentioning the
Skyrme-Hartree-Fock approach [7].

Besides the “global” formulas of which the FDRM
method has become the standard, there are a number of
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“local” mass formulas. These local methods are usually
effective when we require the calculation of the mass of
a nucleus, or a set of nuclei, which are fairly close to a
number of other nuclei of known mass, exploiting the rel-
ative smoothness of the masses M(Z,N) as a function
of proton (Z) and neutron (N) numbers to deduce sys-
tematic trends. Among these methods there are a set of
algebraic relations for neighboring nuclei, known as the
Garvey-Kelson (GK) relations [8].

These relations do not have any free parameters and
can be derived from an independent particle picture. They
are based on a clever idea. The combinations are such
that the number of neutron-neutron, neutron-proton and
proton-proton interactions cancel. In addition to having
the correct number of interactions, the single-particle en-
ergies and the residual interactions within each level, to a
first approximation, cancel too [8].

In order to understand the nature of the errors, in [9] a
systematic study of nuclear masses was carried out using
the shell model. This was achieved by employing realistic
Hamiltonians with a small random component. In [10,11]
we have analyzed in detail the error distribution for the
mass formulas of Möller et al. [5] and found a conspicuous
long range regularity that manifests itself as a double peak
in the distribution of mass differences [10]. This striking
non-Gaussian distribution was found to be robust under a
variety of criteria. By assuming a simple sinusoidal correla-
tion, we could empirically substract these correlations and
made the average deviation diminish by nearly 15% [11].
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Fig. 1. Mass differences from the LDM, FRDM, DZ and our
GK studies, in MeV, as functions of N and Z.

In the present contribution we analyze the mass de-
viations in the Finite-Range Droplet Model (FRDM) of
Möller et al. [5], and in the microscopically motivated mass
formula of DZ [6], and those obtained using the Garvey-
Kelson relations [11]. The presence of strong correlations
between mass errors in neighboring nuclei is clearly ex-
hibited, as well as the existence of a well defined chaotic
signal in its power spectrum, when their correlations are
analyzed as time series [12,13]. It is also shown that the
intrinsic average mass error is smaller that 100 keV.

2 Mapping the mass errors

In fig. 1 we show a gray tone (color-coded on line) depic-
tion of the distribution of mass deviations in the Liquid-
Drop Model, in the FRDM, in the DZ calculations, and
in GK calculations, in the proton number (N) - neutron
number (Z) space. We can see large domains with a simi-
lar error (each tone is associated to the magnitude of the
error). The shell closures are clearly seen in the LDM,
It is remarkable that very well defined correlated areas
of the same gray tone exist for the errors in the FRDM,
and to a lesser extent in the DZ calculations, which are a
clear indication of remaining systematics and correlation.
In the GK calculations the errors are around 100 keV. Al-
though the latter calculations do not allow reliable extrap-
olations, they exhibit the calculability of nuclear masses
when enough local information (masses of neighbor nuclei
or shell model realistic interactions) is available.

In order to measure and quantify the oscillatory pat-
terns in the FRDM observed in fig. 1, different cuts were
performed along selected directions on the N -Z plane.
Given the large number of chains which can be studied,
we have selected those with the largest number of nu-
clei with measured mass. For each cut a Fourier analysis
was performed, and the squared amplitudes are plotted
as a function of the frequencies on the right-hand side of
each figure.

We start our analysis for fixed N or Z, i.e. we se-
lected different chains of isotopes or isotones. Those iso-
topic chains with 20 or more nuclei with measured masses
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Fig. 2. Mass errors in the isotope chains Z = 46 to 56, and
their Fourier analysis.
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Fig. 3. Mass errors in the isotope chains with Z = 30, 36, 37,
38, 40, 87, 89, 91, and their Fourier analysis.

are presented in figs. 2 and 3. Until 1995, the element
which had most isotopes with measured masses was Cs
(Z = 55), with 34.

Figure 2 displays the mass errors for the isotope chains
Z = 46 to 56, and their Fourier analysis, nearly all
exhibiting a prominent peak around the low frequency
f ≈ 1/20 = 0.05.

Figure 3 displays the mass errors for the isotope chains
Z = 30, 36, 37, 38, 40, 87, 89, 91, and their Fourier analysis.

When the squared Fourier amplitudes are plotted as
functions of the frequency ω = k/N using a log-log scale,
the corresponding spectral distributions can then be fitted
to a power law of the form |F (ω)|2 ∼ ωm. For the 18 chains
listed, the fitted slopes m are

m
(1)
FRDM = −1.18± 0.17, m

(1)
DZ = −0.67± 0.16. (1)

They give values close to −1.2 in the FRDM data and
around −0.7 for the deviations found by DZ. The former
is consistent with a frequency dependence of f−1 charac-
teristic of quantum chaos [14], while the latter suggest a
tendency towards a more random behavior characteristic
of white noise.
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Fig. 4. Mass differences plotted as function of Z (top), N
(bottom), and of an ordered list (middle).

3 The boustrophedon line

Plotting the mass differences for different Z, fig. 4 top, and
for different N , fig. 4 bottom, is very common in mass cal-
culations. Both plots exhibit some degree of structure. In
this way we obtain a plot of mass differences as a func-
tion of Z, with all the isotopes plotted along the same
vertical line, see fig. 4. The difficulty in quantifying these
regularities lies in the simple fact that there are many
nuclei with a given N or Z. For this reason in [10] we
have analyzed the data using different cuts. Another way
to organize the FRDM mass errors for the 1654 nuclei
with measured masses is to order them in a single list,
numbered in increasing order. To avoid jumps, we have
ordered the isotopes along a βoυτρoφηδóν (boustrophe-
don) line [11], which literally means “in the way the ox
ploughs”. Nuclei were ordered in increasing mass order.
For a given even A, they were accommodated following
the increase in N -Z, and those nuclei with odd A starting
from the largest value of N -Z, and going on in decreasing
order. The middle panel exhibits the same mass differ-
ences plotted against the order number, from 1 to 1654,
providing an univalued function,

The presence of strong correlations in the Möller et al.
mass differences is apparent from the plot. Regions with
large positive or negative errors are clearly seen. In con-
trast, the distribution of errors for the data of Duflo and
Zuker (not shown, see ref. [12]) is closer to the horizontal
axis, and the correlations are less pronounced, although
not completely absent.

The ordering provides a single-valued function, whose
Fourier transform can be calculated. The squared ampli-
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Fig. 5. Log-log plot of the squared amplitudes of the Fourier
transforms of the mass differences, as functions of the order
parameter (top). Data from FRDM (top) and from Duflo and
Zucker (bottom).

tudes are presented in fig. 5. The slopes are

m
(2)
FRDM = −0.91± 0.05, m

(2)
DZ = −0.51± 0.05, (2)

for the FRDM and DZ mass differences.
While this ordering is quite different from the chains

along N and Z, the slopes are very similar.
To understand the possible origin of these spectral dis-

tributions, it is worth recalling that, while the FRDM
calculations involve a liquid-droplet model plus mean-
field corrections, including deformed single-particle ener-
gies through the Strutinsky method and pairing [5], the
DZ calculations depend on the number of valence proton
and neutron particles and holes, including quadratic terms
motivated by the microscopic Hamiltonian [6].

4 Local analysis of the differences between

measured and calculated masses

We apply the GK procedure to all nuclei in the 2003 com-
pilation [15] where at least one of the relations

−M(N+1, Z−2)+M(N+1, Z)−M(N+2, Z−1)

+M(N+2, Z−2)−M(N,Z)+M(N,Z−1)=0, (3)

M(N+2, Z)−M(N,Z−2)+M(N+1, Z−2)

−M(N+2, Z−1)+M(N,Z−1)−M(N+1, Z)=0 (4)

is applicable.
These simple equations are based on the independent-

particle shell model and, furthermore, constructed such
that neutron-neutron, neutron-proton, and proton-proton
interactions cancel. Both GK relations provide an estimate
for the mass of a given nucleus in terms of five of its neigh-
bors. This calculation can be done in six different forms,
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Table 1. σr.m.s. mass differences, in keV for the LDM, FRDM,
DZ and GK calculations, and for different GK calculations.

Model LDM FRDM DZ GK
σr.m.s. 3447 669 346 189

GK relations 1-12 4-12 7-12 10-12 12
A ≥ 16 189 162 117 95 86
A ≥ 60 123 102 87 81 80

as we can choose any of the six terms in the formula to be
evaluated from the others. Using both formulas, we can
have a maximum of 12 estimates for the mass of a given
nucleus, if the masses of all the required neighboring nu-
clei are known. Of course, there are cases where only 11
evaluations are possible, and so on. About half of all nuclei
with measured masses [15] can be estimated in 12 different
ways and, in all cases, our estimate corresponds to the av-
erage value. To our knowledge, the systematic application
of GK relations in this extended fashion [13] is new.

Using the GK procedure we obtain a very specific pre-
diction, determined by that of its neighbors. In this pro-
cedure there are no free parameters and there is no fit
to the data, just a prediction of nuclear masses arising
from those of its neighbors. In what follows we compare
the mass deviations found in three of the global methods
(LDM, FRDM, DZ) and our GK studies. The correspond-
ing σr.m.s. deviations, defined as

σr.m.s. =

[

1

N

N
∑

i=1

(

M i
exp −M i

th

)2

]1/2

(5)

are displayed in table 1, where we also include the smaller
samples GK-n which involve the application of n or more
GK relations, for which the average deviation is also
quoted. Note the systematic decrease in the errors as a
consequence of a better determination of the masses, pro-
portional to the number of GK relations applied, for each
of the four methods employed. In our best scenario, that
of GK-12, we find an r.m.s. deviation of 80 keV, almost an
order of magnitude smaller than the FDRM one.

5 Conclusions

In summary, a careful use of several global mass formulas
and a systematic application of the Garvey-Kelson rela-
tions imply that there is no evidence that nuclear masses
cannot be calculated with an average accuracy of better
than 100 keV. While mass errors in mean-field calcula-
tions like the FRDM behave in a manner akin to quantum
chaos, with a slope in the power spectrum close to −1,
microscopic models’ results correspond to smaller slopes.

Finally, for the local GK relations the remaining mass de-
viations behave very much like white noise. These results
seem to confirm that the chaotic behavior in the fluctua-
tions arises from neglected many-body effects.

In other words, the chaoticity discussed in [2], accord-
ing to the criteria put forward in [14], seems indeed to be
present in the deviations induced by calculations using the
Möller et al. liquid-droplet mass formula, while it tends
to diminish in the microscopically motivated calculations
of Duflo and Zucker. While for the liquid-droplet model
plus shell corrections a quantum chaotic behavior m ≈ 1
is found, errors in the microscopic mass formula have
m ≈ 0.5, closer to white noise. Given that both models
attempt to describe the same set of experimental masses,
our analysis suggests that quantum fluctuations in the
mass differences arising from substraction of the regular
behavior provided by the liquid-droplet model plus shell
corrections, may have their origin in an incomplete con-
sideration of many body quantum correlations, which are
partially included in the calculations of Duflo and Zuker.
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1. S. Åberg, Nature 417, 499 (2002).
2. O. Bohigas, P. Leboeuf, Phys. Rev. Lett. 88, 92502 (2002).
3. C.E. Rolfs, W.S. Rodney, Cauldrons in the Cosmos (Uni-

versity of Chicago Press, 1988).
4. D. Lunney, J.M. Pearson, C. Thibault, Rev. Mod. Phys.

75, 1021 (2003).
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